We present a new second-order oracle bound for the expected risk of a weighted majority vote. The bound is based on a novel parametric form of the Chebyshev-Cantelli inequality (a.k.a.\ one-sided Chebyshev's), which is amenable to efficient minimization. The new form resolves the optimization challenge faced by prior oracle bounds based on the Chebyshev-Cantelli inequality, the C-bounds [Germain et al., 2015], and, at the same time, it improves on the oracle bound based on second order Markov's inequality introduced by Masegosa et al. [2020]. We also derive the PAC-Bayes-Bennett inequality, which we use for empirical estimation of the oracle bound. The PAC-Bayes-Bennett inequality improves on the PAC-Bayes-Bernstein inequality by Seldin et al. [2012]. We provide an empirical evaluation demonstrating that the new bounds can improve on the work by Masegosa et al. [2020]. Both the parametric form of the Chebyshev-Cantelli inequality and the PAC-Bayes-Bennett inequality may be of independent interest for the study of concentration of measure in other domains.
翻译:我们为预期的加权多数票风险提出了一个新的第二序或序号。 约束基于切比谢夫- 坎特利不平等( a.k.a.\ 片面的Chebyshev- Chebyshev's)的新型参数形式,可以有效最小化。 新的形式解决了基于Chebyshev- Cantelli不平等、C- Bernstein不平等[Germain 等人, 2015年]的先序号限制所面临的优化挑战,同时,它基于马塞戈萨等人(20202020年]提出的马科夫不平等的第二序号限制,改善了甲骨骼。 我们还得出了PAC-Bayes- Bennett不平等的新型形式,我们用这种形式对甲骨文约束进行实证性估计。 PAC- Bayes- Bennett不平等在Seldin等人的PAC- Bayes- Bernstein 等人的PAC- Bernstein不平等[2012年] 等的PAC- Bennetyl- C 中,我们提供了经验评估性评估,表明马塞戈萨萨等人( Masegosa等人) 等工作的新界限可改进[2020年]。 不平等领域不平等问题研究可能也是Cheshev- Benshev- Creal- Cremalystalmestalestalestemmestalmest 的单独利的单独利利研究。