In this paper, we bring the celebrated max-weight features (myopic and discrete actions) to mainstream convex optimization. Myopic actions are important in control because decisions need to be made in an online manner and without knowledge of future events, and discrete actions because many systems have a finite (so non-convex) number of control decisions. For example, whether to transmit a packet or not in communication networks. Our results show that these two features can be encompassed in the subgradient method for the Lagrange dual problem by the use of stochastic and $\epsilon$-subgradients. One of the appealing features of our approach is that it decouples the choice of a control action from a specific choice of subgradient, which allows us to design control policies without changing the underlying convex updates. Two classes of discrete control policies are presented: one that can make discrete actions by looking only at the system's current state, and another that selects actions using blocks. The latter class is useful for handling systems that have constraints on the order in which actions are selected.
翻译:在本文中, 我们将已知的最大重量特性( 中位和离散动作) 引入主流 convex 优化 。 Myopic 动作在控制中很重要, 因为决定需要以在线方式做出, 并且对未来事件不知情, 并且由于许多系统有一定数量( 也就是非 convex ) 的控制决定, 以及离散动作。 例如, 是否传输一个软件包, 是否在通信网络中 。 我们的结果表明, 这两种特性可以通过使用 stopchectic 和 $\ epsilon$- 子梯度来包含在 Lagrange 双重问题的子梯度方法中。 我们方法的一个吸引性特征是, 它将控制动作的选择与特定的子梯度选择区分开来, 这使得我们可以设计控制策略而不改变 基本 convex 更新 。 提供了两种离散控制政策类别: 一种只能通过只查看系统当前状态来进行离散动作, 另一种可以选择使用块动作 。 后一类可用于处理对选择动作的顺序有限制的系统 。