Strong monads and premonoidal categories play a central role in clarifying the denotational semantics of effectful programming languages. Unfortunately, this theory excludes many modern semantic models in which the associativity and unit laws only hold up to coherent isomorphism: for instance, because composition is defined using a universal property. This paper remedies the situation. We define premonoidal bicategories and a notion of strength for pseudomonads, and show that the Kleisli bicategory of a strong pseudomonad is premonoidal. As often in 2-dimensional category theory, the main difficulty is to find the correct coherence axioms on 2-cells. We therefore justify our definitions with numerous examples and by proving a correspondence theorem between actions and strengths, generalizing a well-known category-theoretic result.
翻译:强单子和预单范畴对澄清有副作用的编程语言之指称语义起了核心作用。不幸的是,这个理论排除了许多现代语义模型,在这些模型中,结合律和单位律仅在一致同构下成立:例如,因为使用了通用性质来定义组合。本文弥补了这一状况。我们定义了预单范畴和拟单子的强度概念,并证明强拟单子的Kleisli范畴是预单的。正如2维范畴论中经常出现的那样,主要困难在于找到2细胞的正确的相干公理。因此,我们通过大量的例子和证明一个作用和强度之间的对应定理来证明我们的定义。这一定理推广了一个众所周知的范畴论结果。