The research examined predicting short-duration traffic flow counts with the Kalman filtering technique (KFT), a computational filtering method. Short-term traffic prediction is an important tool for operation in traffic management and transportation system. The short-term traffic flow value results can be used for travel time estimation by route guidance and advanced traveler information systems. Though the KFT has been tested for homogeneous traffic, its efficiency in heterogeneous traffic has yet to be investigated. The research was conducted on Mirpur Road in Dhaka, near the Sobhanbagh Mosque. The stream contains a heterogeneous mix of traffic, which implies uncertainty in prediction. The propositioned method is executed in Python using the pykalman library. The library is mostly used in advanced database modeling in the KFT framework, which addresses uncertainty. The data was derived from a three-hour traffic count of the vehicle. According to the Geometric Design Standards Manual published by Roads and Highways Division (RHD), Bangladesh in 2005, the heterogeneous traffic flow value was translated into an equivalent passenger car unit (PCU). The PCU obtained from five-minute aggregation was then utilized as the suggested model's dataset. The propositioned model has a mean absolute percent error (MAPE) of 14.62, indicating that the KFT model can forecast reasonably well. The root mean square percent error (RMSPE) shows an 18.73% accuracy which is less than 25%; hence the model is acceptable. The developed model has an R2 value of 0.879, indicating that it can explain 87.9 percent of the variability in the dataset. If the data were collected over a more extended period of time, the R2 value could be closer to 1.0.


翻译:通过计算过滤法,Kalman过滤技术(KFT)预测短期交通流量计数。短期交通预测是交通管理和运输系统运作的一个重要工具。短期交通流量值可用于通过路线指南和高级旅行信息系统估算旅行时间。虽然KFT是针对同一交通量的测试,但其不同交通量的效率尚未调查。在靠近Sobhanbagh清真寺的达卡的Mirpur路进行了研究。河流包含混合交通量,这意味着预测的不确定性。短期交通预测是交通管理和运输系统运作的一个重要工具。短期交通流量值可用于通过路线指南和高级旅行信息系统对旅行时间进行估算。虽然KFT是针对同一交通量的测试,但该数据来自三小时的交通流量统计,但该数据尚未经过调查。根据2005年孟加拉国公路和公路司(RHD)出版的《几何设计标准手册》,该混杂交通流量值被转换成一个等量的客车车单位(PCU)。从5分钟的汇总模型中得出了预测的数值,然后用PCUCU用来使用Pyson的模型,这是建议的rus rum ral2,该模型的精确度是比较准确度。该模型,该模型显示了25RPE的精确值。该模型的精确度。该模型的精确度。该模型的精确度。该模型可以比较。该模型显示的精确度为精确度的精确度为精确度。该模型的精确度为精确度为精确度。该模型。该模型,该模型。该模型的精确度为精确度为精确度为精确度为精确度为精确度为精确度。该模型。该模型。该值。该值。该模型的精确度为精确度为精确度为精确度为精确度。 。 表示。该模型的精确度为精确度。该模型的精确度为精确度为精确度为精确度。该模型。该模型的精确度为精确度为精确度。该模型的精确值。该模型的精确值。该模型可测算值。该模型的精确值。

1
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员