Traffic congestion is a major urban issue due to its adverse effects on health and the environment, so much so that reducing it has become a priority for urban decision-makers. In this work, we investigate whether a high amount of data on traffic flow throughout a city and the knowledge of the road city network allows an Artificial Intelligence to predict the traffic flux far enough in advance in order to enable emission reduction measures such as those linked to the Low Emission Zone policies. To build a predictive model, we use the city of Valencia traffic sensor system, one of the densest in the world, with nearly 3500 sensors distributed throughout the city. In this work we train and characterize an LSTM (Long Short-Term Memory) Neural Network to predict temporal patterns of traffic in the city using historical data from the years 2016 and 2017. We show that the LSTM is capable of predicting future evolution of the traffic flux in real-time, by extracting patterns out of the measured data.
翻译:由于交通堵塞对健康和环境的不利影响,是一个重大的城市问题,因此减少交通堵塞已成为城市决策者的一个优先事项。在这项工作中,我们调查关于城市交通流量的大量数据以及道路城市网络的知识是否允许人工智能提前足够早地预测交通流量,以便能够采取减排措施,例如与低排放区政策相关的措施。为了建立一个预测模型,我们使用世界上最稠密的城市巴伦西亚交通传感器系统(巴伦西亚市),该市拥有近3 500个传感器,分布在城市各地。在这项工作中,我们用2016年和2017年的历史数据对一个LSTM(长短期记忆)神经网络进行了培训和定性,以预测城市的交通时间模式。我们显示,LSTM能够通过从测量的数据中提取模式,预测实时交通流量的未来演变。