Musical preferences have been considered a mirror of the self. In this age of Big Data, online music streaming services allow us to capture ecologically valid music listening behavior and provide a rich source of information to identify several user-specific aspects. Studies have shown musical engagement to be an indirect representation of internal states including internalized symptomatology and depression. The current study aims at unearthing patterns and trends in the individuals at risk for depression as it manifests in naturally occurring music listening behavior. Mental well-being scores, musical engagement measures, and listening histories of Last.fm users (N=541) were acquired. Social tags associated with each listener's most popular tracks were analyzed to unearth the mood/emotions and genres associated with the users. Results revealed that social tags prevalent in the users at risk for depression were predominantly related to emotions depicting Sadness associated with genre tags representing neo-psychedelic-, avant garde-, dream-pop. This study will open up avenues for an MIR-based approach to characterizing and predicting risk for depression which can be helpful in early detection and additionally provide bases for designing music recommendations accordingly.


翻译:音乐偏好被认为是自我的镜像。 在《大数据》时代,在线音乐流服务让我们能够捕捉生态上有效的音乐监听行为,并提供丰富的信息来源,以识别用户特有的几个方面。研究表明,音乐接触间接地代表了内部状态,包括内化的症状学和抑郁症。当前研究的目的在于挖掘面临抑郁风险的个人的形态和趋势,因为它表现在自然发生的音乐监听行为中。获得了Last.fm用户的心理健康评分、音乐参与措施和监听记录(N=541)。与每个听众最受欢迎的轨道相关的社会标记经过分析,以揭示与用户相关的情绪/情绪和类型。研究结果显示,在面临抑郁风险的使用者中普遍存在的社会标记主要与反映新精神-精神-精神-先发性、梦想-流行-基因-基因标记的萨德内症描述相关的情绪有关。这项研究将为基于MIR的描述和预测抑郁风险的方法开辟新的途径,有助于早期检测,并因此为设计音乐建议提供补充基础。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
5+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员