Efficiently digitizing high-fidelity animatable human avatars from videos is a challenging and active research topic. Recent volume rendering-based neural representations open a new way for human digitization with their friendly usability and photo-realistic reconstruction quality. However, they are inefficient for long optimization times and slow inference speed; their implicit nature results in entangled geometry, materials, and dynamics of humans, which are hard to edit afterward. Such drawbacks prevent their direct applicability to downstream applications, especially the prominent rasterization-based graphic ones. We present EMA, a method that Efficiently learns Meshy neural fields to reconstruct animatable human Avatars. It jointly optimizes explicit triangular canonical mesh, spatial-varying material, and motion dynamics, via inverse rendering in an end-to-end fashion. Each above component is derived from separate neural fields, relaxing the requirement of a template, or rigging. The mesh representation is highly compatible with the efficient rasterization-based renderer, thus our method only takes about an hour of training and can render in real-time. Moreover, only minutes of optimization is enough for plausible reconstruction results. The disentanglement of meshes enables direct downstream applications. Extensive experiments illustrate the very competitive performance and significant speed boost against previous methods. We also showcase applications including novel pose synthesis, material editing, and relighting. The project page: https://xk-huang.github.io/ema/.


翻译:近来,从视频中高保真度可动画人形化身的数字化制作变得越来越具有挑战性并成为一个活跃的研究领域。最新的基于体积渲染的神经表示法用其友好的可用性和逼真的重建质量开创了高保真度人形数字化的新方法。然而,由于其隐式的性质,长时间的优化过程和低效的推理速度,这些表示法往往导致人形的几何、材质和动力学相互纠缠,难以之后进行编辑,这一点阻碍了它们被直接应用于下游应用,特别是突出的基于光栅化的图形应用。因此,我们提出了 EMA,一种能够高效学习网格神经场以重新构建可动画人形化身的方法。EMA 通过逆渲染从三个分类的神经场(显式三角规范网格,空间变化的材质和动力学)中联合优化每个部件,并以端到端的方式进行训练。上述每个组件都是由单独的神经场导出的,从而可以放宽模板或骨骼的要求。网格表示法与高效的基于光栅化的渲染器高度兼容,因此我们的方法只需要一个小时的训练就能够实时渲染。此外,只需要几分钟的优化,即可获得合理的重建结果。网格的解缠使其能够直接用于下游应用。大量实验证明了它在性能和速度方面的竞争优势,并展示了包括新颖姿态合成、材质编辑和重新亮度的应用。更多详情请访问项目主页:https://xk-huang.github.io/ema/。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【NeurIPS2021】NeRV:视频的神经表示
专知会员服务
11+阅读 · 2021年10月28日
【动态】第四届新一代计算机动画技术研讨会成功举办
中国图象图形学学会CSIG
0+阅读 · 2022年7月25日
「Github」多模态机器学习文章阅读列表
专知
123+阅读 · 2019年8月15日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
【NeurIPS2021】NeRV:视频的神经表示
专知会员服务
11+阅读 · 2021年10月28日
相关基金
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员