Next POI recommendation intends to forecast users' immediate future movements given their current status and historical information, yielding great values for both users and service providers. However, this problem is perceptibly complex because various data trends need to be considered together. This includes the spatial locations, temporal contexts, user's preferences, etc. Most existing studies view the next POI recommendation as a sequence prediction problem while omitting the collaborative signals from other users. Instead, we propose a user-agnostic global trajectory flow map and a novel Graph Enhanced Transformer model (GETNext) to better exploit the extensive collaborative signals for a more accurate next POI prediction, and alleviate the cold start problem in the meantime. GETNext incorporates the global transition patterns, user's general preference, spatio-temporal context, and time-aware category embeddings together into a transformer model to make the prediction of user's future moves. With this design, our model outperforms the state-of-the-art methods with a large margin and also sheds light on the cold start challenges within the spatio-temporal involved recommendation problems.
翻译:POI的下一个建议旨在预测用户当前状况和历史资料的近期未来运动,为用户和服务提供者带来巨大的价值;然而,这个问题显然十分复杂,因为需要同时考虑各种数据趋势。这包括空间位置、时间背景、用户的偏好等。大多数现有研究将下一个POI建议视为一个序列预测问题,同时忽略其他用户提供的合作信号。相反,我们提议了一个用户不可知的全球轨迹流图和一个新的图表增强变异器模型(GETNEXL),以便更好地利用广泛的协作信号进行更准确的下一个POI预测,并同时缓解冷启动问题。 GETNext将全球过渡模式、用户的一般偏好、随机环境以及时间认知类别纳入一个变异模型,以便对用户的未来动作作出预测。有了这一设计,我们的模型就大大超越了当前最先进的方法,用一个大空间空间-时空的建议问题也揭示了冷启动的挑战。</s>