Viscous contact problems describe the time evolution of fluid flows in contact with a surface from which they can detach and reattach. These problems are of particular importance in glaciology, where they arise in the study of grounding lines and subglacial cavities. In this work, we propose a novel numerical method for solving viscous contact problems based on a mixed formulation with Lagrange multipliers of a variational inequality involving the Stokes equation. The advection equation for evolving the geometry of the domain occupied by the fluid is then solved via a specially-built upwinding scheme, leading to a robust and accurate algorithm for viscous contact problems. We first verify the method by comparing the numerical results to analytical results obtained by a linearised method. Then, we use this numerical scheme to reconstruct friction laws for glacial sliding with cavitation. Finally, we compute the evolution of cavities from a steady state under oscillating water pressures. The results depend strongly on the location of the initial steady state along the friction law. In particular, we find that if the steady state is located on the downsloping or rate-weakening part of the friction law, the cavity evolves towards the upsloping section, indicating that the downsloping part is unstable.
翻译:粘结接触问题描述与表面接触的流体流与它们能够脱落和再接合的表面接触的流体的时间演变过程。 这些问题在冰川学中特别重要, 这些问题在基底线和亚冰川腔的研究中产生。 在这项工作中, 我们提出一种新的数字方法, 以解决粘结接触问题, 其依据是同拉格朗基乘数的混合配方, 涉及斯托克斯方程式的变异性不平等。 流体所占用域的几何演进的吸附方程式, 然后通过一个特别建造的顺流办法加以解决, 导致对粘结接触问题进行强有力和准确的算法。 我们首先通过将数字结果与线性方法的分析结果进行比较来核查这种方法。 然后, 我们用这个数字方法来重建摩擦法, 以便用熔化法进行冰川滑动。 最后, 我们算出在振动的水压力下稳定状态下演进。 其结果在很大程度上取决于与摩擦法的初始状态的位置。 特别是, 我们发现, 稳定的摩擦法正在走向部分, 稳定的状态正在向稳定, 正在向稳定变化中, 水平 向着 。