Health monitoring applications increasingly rely on machine learning techniques to learn end-user physiological and behavioral patterns in everyday settings. Considering the significant role of wearable devices in monitoring human body parameters, on-device learning can be utilized to build personalized models for behavioral and physiological patterns, and provide data privacy for users at the same time. However, resource constraints on most of these wearable devices prevent the ability to perform online learning on them. To address this issue, it is required to rethink the machine learning models from the algorithmic perspective to be suitable to run on wearable devices. Hyperdimensional computing (HDC) offers a well-suited on-device learning solution for resource-constrained devices and provides support for privacy-preserving personalization. Our HDC-based method offers flexibility, high efficiency, resilience, and performance while enabling on-device personalization and privacy protection. We evaluate the efficacy of our approach using three case studies and show that our system improves the energy efficiency of training by up to $45.8\times$ compared with the state-of-the-art Deep Neural Network (DNN) algorithms while offering a comparable accuracy.


翻译:健康监测应用日益依赖机器学习技术来学习终端用户生理和行为模式的日常环境。考虑到磨损装置在监测人体参数方面的重要作用,可以利用在线学习来建立个人化的行为和生理模式模式,同时为用户提供数据隐私。然而,大多数这些磨损装置的资源限制妨碍了他们在线学习的能力。为了解决这一问题,需要从算法角度重新思考机器学习模式,使之适合在可磨损装置上运行。超维计算(HDC)为资源限制装置提供了一种完全适合于设计的技术学习解决方案,并为隐私保护个性化提供了支持。我们基于HDC的方法提供了灵活性、高效性、弹性和性能,同时使个人化和隐私保护成为可行的条件。我们利用三个案例研究评估了我们的方法的有效性,并表明我们的系统提高了培训的能效,与州级深神经网络(DNNN)相比,提高了45.8美元。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员