Applicative bisimilarity is a coinductive characterisation of observational equivalence in call-by-name lambda-calculus, introduced by Abramsky (1990). Howe (1996) gave a direct proof that it is a congruence, and generalised the result to all languages complying with a suitable format. We propose a categorical framework for specifying operational semantics, in which we prove that (an abstract analogue of) applicative bisimilarity is automatically a congruence. Example instances include standard applicative bisimilarity in call-by-name, call-by-value, and call-by-name non-deterministic $\lambda$-calculus, and more generally all languages complying with a variant of Howe's format.
翻译:Abramsky(1990年)引进了Abramsky(1990年)的Ambda-calculus调用中观测等值的相扣性特征。Howe(1996年)直接证明这是一致的,并将结果推广到符合适当格式的所有语文。我们提出了一个明确的框架,用于说明操作性语义,其中我们证明(抽象的)相配性双异性自动一致。例子包括按调用、按调用和调用的非非非确定性语义 $\lambda$-calculus中的标准替代性双异性,以及更一般地所有符合Howe格式变式的语言。