Deep-learning models such as Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) have been successfully used for process-mining tasks. They have achieved better performance for different predictive tasks than traditional approaches. We extend the existing body of research by testing four different variants of Graph Neural Networks (GNN) and a fully connected Multi-layer Perceptron (MLP) with dropout for the tasks of predicting the nature and timestamp of the next process activity. In contrast to existing studies, we evaluate our models' performance at different stages of a process, determined by quartiles of the number of events and normalized quarters of the case duration. This provides new insights into the performance of a prediction model, as they behave differently at different stages of a business-process. Interestingly, our experiments show that the simple MLP often outperforms more sophisticated deep-learning models in both prediction tasks. We argue that care needs to be taken when applying automated process-prediction techniques at different stages of a process. We further argue that researchers should reflect their results with strong baselines methods like simple MLPs.


翻译:革命神经网络(CNN)和长期短期内存(LSTM)等深层学习模型被成功地用于处理采矿任务,这些模型比传统方法在不同的预测任务中取得了更好的业绩。我们通过测试四个不同的图表神经网络(GNN)和完全连接的多层感应器(MLP)的四种不同的变体和完全连接的多层感应器(MLP)来测试预测下一个过程活动的性质和时间戳。与现有的研究不同,我们评估了我们的模型在一个由事件数量四分法和案件周期的正常间隔决定的不同过程各阶段的绩效。这为预测模型的性能提供了新的洞见,因为它们在商业过程的不同阶段的表现不同。有意思的是,我们的实验表明,简单的MLP往往在两个预测任务中都比更精密的深学习模型要强。我们主张,在程序的不同阶段应用自动过程定位技术时需要谨慎。我们进一步认为,研究人员应该用简单的MLPs等强有力的基线方法反映其结果。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
12+阅读 · 2019年3月14日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员