In the past decade, many vulnerabilities were discovered in microarchitectures which yielded attack vectors and motivated the study of countermeasures. Further, architectural and physical imperfections in DRAMs led to the discovery of Rowhammer attacks which give an adversary power to introduce bit flips in a victim's memory space. Numerous studies analyzed Rowhammer and proposed techniques to prevent it altogether or to mitigate its effects. In this work, we push the boundary and show how Rowhammer can be further exploited to inject faults into stack variables and even register values in a victim's process. We achieve this by targeting the register value that is stored in the process's stack, which subsequently is flushed out into the memory, where it becomes vulnerable to Rowhammer. When the faulty value is restored into the register, it will end up used in subsequent iterations. The register value can be stored in the stack via latent function calls in the source or by actively triggering signal handlers. We demonstrate the power of the findings by applying the techniques to bypass SUDO and SSH authentication. We further outline how MySQL and other cryptographic libraries can be targeted with the new attack vector. There are a number of challenges this work overcomes with extensive experimentation before coming together to yield an end-to-end attack on an OpenSSL digital signature: achieving co-location with stack and register variables, with synchronization provided via a blocking window. We show that stack and registers are no longer safe from the Rowhammer attack.
翻译:暂无翻译