The encoder-decoder model is a commonly used Deep Neural Network (DNN) model for medical image segmentation. Conventional encoder-decoder models make pixel-wise predictions focusing heavily on local patterns around the pixel. This makes it challenging to give segmentation that preserves the object's shape and topology, which often requires an understanding of the global context of the object. In this work, we propose a Fourier Coefficient Segmentation Network~(FCSN) -- a novel DNN-based model that segments an object by learning the complex Fourier coefficients of the object's masks. The Fourier coefficients are calculated by integrating over the whole contour. Therefore, for our model to make a precise estimation of the coefficients, the model is motivated to incorporate the global context of the object, leading to a more accurate segmentation of the object's shape. This global context awareness also makes our model robust to unseen local perturbations during inference, such as additive noise or motion blur that are prevalent in medical images. When FCSN is compared with other state-of-the-art models (UNet+, DeepLabV3+, UNETR) on 3 medical image segmentation tasks (ISIC\_2018, RIM\_CUP, RIM\_DISC), FCSN attains significantly lower Hausdorff scores of 19.14 (6\%), 17.42 (6\%), and 9.16 (14\%) on the 3 tasks, respectively. Moreover, FCSN is lightweight by discarding the decoder module, which incurs significant computational overhead. FCSN only requires 22.2M parameters, 82M and 10M fewer parameters than UNETR and DeepLabV3+. FCSN attains inference and training speeds of 1.6ms/img and 6.3ms/img, that is 8$\times$ and 3$\times$ faster than UNet and UNETR.


翻译:Vcoder- decoder 模型是一种常用的医学图像分割 深神经网络(DNN) 模型。 常规编码器- decoder 模型以像素周围的本地模式为主进行等离子预测。 因此, 给对象形状和表层进行分解以保存对象的形状和表层, 这往往需要了解对象的全局背景。 在这项工作中, 我们提议了一个 Fourier 高效分解网络~ (FCSNS$)(FCSNS) -- 一种基于 DNNNN的新型模型, 通过学习物体面具的复杂的 Fourier系数来分解一个对象。 Fourier 系数是用整个像素的集成法来计算的。 因此, 为了让我们的模型能够准确估计对象的形状和表层的形状。 exNUR3C (NSNC) 和 RASNC 3M) 的模型比其他州- discial 需要大大的 IM IM 20 和 RISC 3 和 RISC 的模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年11月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员