Shadow tomography via classical shadows is a state-of-the-art approach for estimating properties of a quantum state. We present a simplified, combinatorial analysis of a recently proposed instantiation of this approach based on the ensemble of unitaries that are both fermionic Gaussian and Clifford. Using this analysis, we derive a corrected expression for the variance of the estimator. We then show how this leads to efficient estimation protocols for the fidelity with a pure fermionic Gaussian state (provably) and for an $X$-like operator of the form ($|\mathbf 0\rangle\langle\psi|$ + h.c.) (via numerical evidence). We also construct much smaller ensembles of measurement bases that yield the exact same quantum channel, which may help with compilation. We use these tools to show that an $n$-electron, $m$-mode Slater determinant can be learned to within $\epsilon$ fidelity given $O(n^2 m^7 \log(m / \delta) / \epsilon^2)$ samples of the Slater determinant.
翻译:通过古典阴影进行影影扫描,这是用来估计量子状态属性的最先进的方法。我们根据一个共成的单词,对最近提议的一种方法的即时化进行了简化的组合式分析。我们利用这一分析,得出一个校正的表达法,以校正天体偏差。我们然后展示这如何导致对一个纯大高地状态(可能)和一种类似美元的形式(按数字证据计算)的美元等值操作员的忠诚性进行高效估计。我们还根据一个共成的共成单词,即高山和克里夫多德。我们还建造了小得多的测量基群,产生相同的量子通道,这可能有助于编译。我们使用这些工具来显示,在美元范围内可以学习一元的美元,一百万元-摩德的Slaterer condictive,给S-n2 m=7\latromaxm / sepdelglegleum /m\ driblexm\ driglegrom/ disal 2。