We address the problem of novel view synthesis from an unstructured set of reference images. A new method called RGBD-Net is proposed to predict the depth map and the color images at the target pose in a multi-scale manner. The reference views are warped to the target pose to obtain multi-scale plane sweep volumes, which are then passed to our first module, a hierarchical depth regression network which predicts the depth map of the novel view. Second, a depth-aware generator network refines the warped novel views and renders the final target image. These two networks can be trained with or without depth supervision. In experimental evaluation, RGBD-Net not only produces novel views with higher quality than the previous state-of-the-art methods, but also the obtained depth maps enable reconstruction of more accurate 3D point clouds than the existing multi-view stereo methods. The results indicate that RGBD-Net generalizes well to previously unseen data.
翻译:我们从一套没有结构的参考图像中处理新颖的视图合成问题。 提议采用名为 RGBD- Net 的新方法, 以多尺度的方式预测目标的深度地图和彩色图像。 引用视图被扭曲到目标方形, 以获得多尺度的平面扫瞄量, 然后传递到我们的第一个模块, 一个等级深度回归网络, 以预测新视图的深度地图。 其次, 一个深深觉生成网络 精细地改进扭曲的新视图, 并制作最终的目标图像 。 这两个网络可以在有深度监督的情况下或没有深度监督的情况下接受培训 。 在实验性评估中, RGBD- Net 不仅产生比以前最先进的方法质量更高的新观点, 而且获得的深度地图能够重建比现有的多视图立体方法更准确的三维点云。 结果表明, RGBD- Net 将以往的不可见的数据概括化为好。