In real-world time series recognition applications, it is possible to have data with varying length patterns. However, when using artificial neural networks (ANN), it is standard practice to use fixed-sized mini-batches. To do this, time series data with varying lengths are typically normalized so that all the patterns are the same length. Normally, this is done using zero padding or truncation without much consideration. We propose a novel method of normalizing the lengths of the time series in a dataset by exploiting the dynamic matching ability of Dynamic Time Warping (DTW). In this way, the time series lengths in a dataset can be set to a fixed size while maintaining features typical to the dataset. In the experiments, all 11 datasets with varying length time series from the 2018 UCR Time Series Archive are used. We evaluate the proposed method by comparing it with 18 other length normalization methods on a Convolutional Neural Network (CNN), a Long-Short Term Memory network (LSTM), and a Bidirectional LSTM (BLSTM).
翻译:在实时时间序列识别应用程序中,有可能拥有不同长度模式的数据。 但是,在使用人工神经网络(ANN)时,使用固定大小的小孔是标准做法。 要做到这一点,不同长度的时间序列数据通常会正常化,以便所有模式的长度都相同。 通常,这是在不考虑太多的情况下使用零斜体或短线来完成的。 我们提出一种新的方法,通过利用动态时间转换(DTW)的动态匹配能力,在一个数据集中使时间序列的长度正常化。 这样,数据集中的时间序列长度可以设定为固定大小,同时保持数据集的典型特征。 在实验中,使用2018 UCR时间序列的所有11个不同时间序列的数据集。 我们通过将它与其他18个动态神经网络(CNN)、一个长短期内存网络(LSTM)和一个双向式LSTM(BLSTM)的常规方法进行比较,对拟议方法进行评估。