We investigate how to solve the cross-corpus news recommendation for unseen users in the future. This is a problem where traditional content-based recommendation techniques often fail. Luckily, in real-world recommendation services, some publisher (e.g., Daily news) may have accumulated a large corpus with lots of consumers which can be used for a newly deployed publisher (e.g., Political news). To take advantage of the existing corpus, we propose a transfer learning model (dubbed as TrNews) for news recommendation to transfer the knowledge from a source corpus to a target corpus. To tackle the heterogeneity of different user interests and of different word distributions across corpora, we design a translator-based transfer-learning strategy to learn a representation mapping between source and target corpora. The learned translator can be used to generate representations for unseen users in the future. We show through experiments on real-world datasets that TrNews is better than various baselines in terms of four metrics. We also show that our translator is effective among existing transfer strategies.
翻译:我们研究未来如何解决针对无形用户的跨公司新闻建议。 这是一个传统基于内容的建议技术常常失败的问题。 幸运的是, 在现实世界建议服务中,一些出版商(例如每日新闻)可能已经与大量消费者积累了大量资料,可供新部署的出版商(例如政治新闻)使用。 为了利用现有资料,我们提议了一个传输学习模式(作为TrNews),用于新闻建议,将知识从来源资料库转移到目标资料库。为了解决不同用户利益和整个公司不同文字分布的异质性,我们设计了一个基于翻译的转移学习战略,以学习源和目标公司之间的代表图。 学习的翻译可以用来为未来看不见的用户提供陈述。 我们通过在现实世界数据集上进行实验,显示TrNews在四种计量方面比各种基线要好。 我们还表明,我们的翻译在现有的转移战略中是有效的。