Several Machine Learning (ML) methodologies have been proposed to improve security in Internet Of Things (IoT) networks and reduce the damage caused by the action of malicious agents. However, detecting and classifying attacks with high accuracy and precision is still a major challenge. This paper proposes an online attack detection and network traffic classification system, which combines stream Machine Learning, Deep Learning, and Ensemble Learning technique. Using multiple stages of data analysis, the system can detect the presence of malicious traffic flows and classify them according to the type of attack they represent. Furthermore, we show how to implement this system both in an IoT network and from an ML point of view. The system was evaluated in three IoT network security datasets, in which it obtained accuracy and precision above 90% with a reduced false alarm rate.


翻译:为加强物联网网络的安全,减少恶意行为造成的破坏,提出了几种机器学习方法;然而,以高度准确和精确的方式侦查和分类袭击仍然是一个重大挑战;本文件提议建立一个网络攻击探测和网络交通分类系统,结合流机学习、深学习和综合学习技术;利用数据分析的多个阶段,该系统可以检测恶意交通流量的存在,并按其所代表的攻击类型进行分类;此外,我们展示了如何在IoT网络和从ML角度实施这一系统;该系统在三个IoT网络安全数据集中进行了评价,在该系统中,精确度和精确度均超过90%,并降低了错误警报率。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
Top
微信扫码咨询专知VIP会员