Background: Alzheimers disease is a progressive neurodegenerative disorder and the main cause of dementia in aging. Hippocampus is prone to changes in the early stages of Alzheimers disease. Detection and observation of the hippocampus changes using magnetic resonance imaging (MRI) before the onset of Alzheimers disease leads to the faster preventive and therapeutic measures. Objective: The aim of this study was the segmentation of the hippocampus in magnetic resonance (MR) images of Alzheimers patients using deep machine learning method. Methods: U-Net architecture of convolutional neural network was proposed to segment the hippocampus in the real MRI data. The MR images of the 100 and 35 patients available in Alzheimers disease Neuroimaging Initiative (ADNI) dataset, was used for the train and test of the model, respectively. The performance of the proposed method was compared with manual segmentation by measuring the similarity metrics. Results: The desired segmentation achieved after 10 iterations. A Dice similarity coefficient (DSC) = 92.3%, sensitivity = 96.5%, positive predicted value (PPV) = 90.4%, and Intersection over Union (IoU) value for the train 92.94 and test 92.93 sets were obtained which are acceptable. Conclusion: The proposed approach is promising and can be extended in the prognosis of Alzheimers disease by the prediction of the hippocampus volume changes in the early stage of the disease.


翻译:阿尔茨海默氏病的背景:阿尔茨海默氏病是一种渐进性神经退化性紊乱症,是老年痴呆症的主要成因。Hippocampus很容易在阿尔茨海默氏病的早期阶段发生变化。在阿尔茨海默氏病开始之前,使用磁共振成像(MRI)检测和观察河马坎普斯的变化,导致采取更快的预防和治疗措施。目标:本研究的目的是利用深机学习方法将阿尔茨海默氏病人的磁共振成(MR)图象分割成磁共振动神经网络的图象。方法:在真正的92.RI数据中,对河马氏病早期阶段的河马坎普斯的U-Net结构进行了分化。在阿尔茨海默氏病开始之前,使用100和35个病人的MMRM(MR)图像进行检测和观察,分别用于该模型的培训和测试。拟议方法的绩效与人工分解是测量10次深度后实现的预期分化。Dice 类似性系数=92.3%,灵敏度=96.5%; 内层的内层变变变的预测值是内测算法的正确值。内,内,内测值为可接受性变值。内,内列列列的直值为直值(P-93%。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
VIP会员
相关VIP内容
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员