The current state-of-the-art deep neural networks (DNNs) for Alzheimer's Disease diagnosis use different biomarker combinations to classify patients, but do not allow extracting knowledge about the interactions of biomarkers. However, to improve our understanding of the disease, it is paramount to extract such knowledge from the learned model. In this paper, we propose a Deep Factorization Machine model that combines the ability of DNNs to learn complex relationships and the ease of interpretability of a linear model. The proposed model has three parts: (i) an embedding layer to deal with sparse categorical data, (ii) a Factorization Machine to efficiently learn pairwise interactions, and (iii) a DNN to implicitly model higher order interactions. In our experiments on data from the Alzheimer's Disease Neuroimaging Initiative, we demonstrate that our proposed model classifies cognitive normal, mild cognitive impaired, and demented patients more accurately than competing models. In addition, we show that valuable knowledge about the interactions among biomarkers can be obtained.
翻译:目前阿尔茨海默氏病诊断最先进的深层神经网络(DNN)使用不同的生物标志组合对病人进行分类,但不允许提取有关生物标志相互作用的知识。然而,为了提高我们对该疾病的认识,最重要的是从所学模型中提取这种知识。在本文中,我们提议了一个深系数机制模型,将DNN学习复杂关系的能力和线性模型的易解性结合起来。提议的模型有三个部分:(一) 嵌入层,处理稀少的绝对数据,(二) 一个高效学习对称互动的保理机,和(三) 一个内含性地模拟更高顺序互动的DNNN。在我们关于阿尔茨海默氏疾病神经造影倡议的数据的实验中,我们证明我们提议的模型将认知正常、轻度认知受损和痴呆病人的分类比相互竞争模型更准确。此外,我们展示了有关生物标志相互作用的宝贵知识。