Sign Language Translation (SLT) is a challenging task that aims to generate spoken language sentences from sign language videos. In this paper, we introduce a hybrid SLT approach, Spotter+GPT, that utilizes a sign spotter and a pretrained large language model to improve SLT performance. Our method builds upon the strengths of both components. The videos are first processed by the spotter, which is trained on a linguistic sign language dataset, to identify individual signs. These spotted signs are then passed to the powerful language model, which transforms them into coherent and contextually appropriate spoken language sentences.
翻译:暂无翻译