LixTMO2 (TM=Ni, Co, Mn) forms an important family of cathode materials for Li-ion batteries, whose performance is strongly governed by Li composition-dependent crystal structure and phase stability. Here, we use LixCoO2 (LCO) as a model system to benchmark a machine learning-enabled framework for bridging scales in materials physics. We focus on two scales: (a) assemblies of thousands of atoms described by density functional theory-informed statistical mechanics, and (b) continuum phase field models to study the dynamics of order-disorder transitions in LCO. Central to the scale bridging is the rigorous, quantitatively accurate, representation of the free energy density and chemical potentials of this material system by coarsegraining formation energies for specific atomic configurations. We develop active learning workflows to train recently developed integrable deep neural networks for such high-dimensional free energy density and chemical potential functions. The resulting, first principles-informed, machine learning-enabled, phase-field computations allow us to study LCO cathodes' phase evolution in terms of temperature, morphology, charge cycling and particle size.
翻译:LixTMO2 (TM=Ni, Co, Mn) 构成利离电池重要的阴极材料系列,其性能受利成成份晶体结构和阶段稳定性的严格制约。在这里,我们使用利克斯-科O2 (LCO) 作为一种模型系统,为材料物理学中架桥尺度的机器学习框架进行基准基准。我们侧重于两个尺度:(a) 由密度理论性理论性统计力描述的数千个原子组合,以及(b) 用于研究LCO中秩序-疾病向规模过渡动态的连续阶段实地模型。中央是严格、数量准确的这一材料系统自由能源密度和化学潜力的表述,具体原子构造为粗化形成能量。我们开发了积极的学习流程,以培训最近开发的、高维自由能源密度和化学潜在功能的可耐深神经网络。由此产生的第一种原则性、机器学习力和阶段性计算方法,使我们能够从温度、形态学、电路环和粒体大小的角度研究LCO CDdedes的阶段演变过程。