This study investigates an application of a new probabilistic interpretation of a softmax output to Open-Set Recognition (OSR). Softmax is a mechanism wildly used in classification and object recognition. However, a softmax mechanism forces a model to operate under a closed-set paradigm, i.e., to predict an object class out of a set of pre-defined labels. This characteristic contributes to efficacy in classification, but poses a risk of non-sense prediction in object recognition. Object recognition is often operated under a dynamic and diverse condition. A foreign object -- an object of any unprepared class -- can be encountered at any time. OSR is intended to address an issue of identifying a foreign object in object recognition. Based on Bayes theorem and the emphasis of conditioning on the context, softmax inference has been re-interpreted. This re-interpretation has led to a new approach to OSR, called Latent Cognizance (LC). Our investigation employs various scenarios, using Imagenet 2012 dataset as well as fooling and open-set images. The findings support LC hypothesis and show its effectiveness on OSR.
翻译:此项研究调查了对开放式识别(OSSR)的软成像输出应用一种新的概率解释。 软成形是用于分类和对象识别的一种机制。 然而,软成形机制迫使一种模式在封闭式范式下运行,即用一套预先定义的标签来预测一个对象类别。 这一特征有助于分类的有效性,但有在目标识别中进行非感知预测的风险。 对象识别经常在动态和多样的条件下运作。 一个外国对象 -- -- 任何未准备的类的物体 -- -- 随时都可以遇到。 软成形模型旨在解决在目标识别中识别一个外国对象的问题。 基于Bayes 理论和对环境的强调,软成形推断被重新解释。 这种重新解释导致对 OSR采取新的方法,称为Lent CLawnationce(LC)。 我们的调查使用了各种假设,使用图像网络2012的数据集以及愚弄和开版图像。 发现LC假设和显示其在OS上的有效性。