The assignment game forms a paradigmatic setting for studying the core -- its pristine structural properties yield an in-depth understanding of this quintessential solution concept within cooperative game theory. In turn, insights gained provide valuable guidance on profit-sharing in real-life situations. In this vein, we raise three basic questions and address them using the following broad idea. Consider the LP-relaxation of the problem of computing an optimal assignment. On the one hand, the worth of the assignment game is given by the optimal objective function value of this LP, and on the other, the classic Shapley-Shubik Theorem \cite{Shapley1971assignment} tells us that its core imputations are precisely optimal solutions to the dual of this LP. These two facts naturally raise the question of viewing core imputations through the lens of complementarity. This leads to a resolution of all our questions. Whereas the core of the assignment game is always non-empty, that of the general graph matching game can be empty. We next consider the class of general graph matching games having non-empty core and again we study the three questions raised above. The answers obtained are weaker and the reason lies in the difference in the characterizations of the vertices of the Birkhoff and Balinski polytopes.


翻译:任务游戏形成了研究核心的范式环境 -- -- 其纯净的结构属性在合作游戏理论中产生了对这一典型解决方案概念的深入理解。 反过来, 获得的洞察力为实际生活中的利润分享提供了宝贵的指导。 本着这一思路, 我们提出三个基本问题, 并使用以下广泛想法来解决这些问题。 考虑LP松绑计算最佳任务分配问题。 一方面, 任务分配游戏的价值由这个 LP 的最佳客观功能值给定, 而另一方面, 经典的 Shapley- Shubik Theorem\ cite{Shaplekh1971straction} 告诉我们, 其核心估算是这个LP 的双轨的最佳解决方案。 这两个事实自然提出了从互补的角度看待核心包涵的问题。 这导致解决了我们所有问题。 虽然任务分配游戏的核心总是不是空的, 但是一般图表匹配游戏的价值可能是空的。 我们接下来考虑普通图表匹配游戏的类类类, 其核心不是空的, 核心和我们再次研究Birinski 提出的三个原因的答案。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月26日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年6月26日
Arxiv
0+阅读 · 2022年6月23日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员