Standard deep learning algorithms are implemented using floating-point real numbers. This presents an obstacle for implementing them on low-end devices which may not have dedicated floating-point units (FPUs). As a result, researchers in tinyML have considered machine learning algorithms that can train and run a deep neural network (DNN) on a low-end device using integer operations only. In this paper we propose PocketNN, a light and self-contained proof-of-concept framework in pure C++ for the training and inference of DNNs using only integers. Unlike other approaches, PocketNN directly operates on integers without requiring any explicit quantization algorithms or customized fixed-point formats. This was made possible by pocket activations, which are a family of activation functions devised for integer-only DNNs, and an emerging DNN training algorithm called direct feedback alignment (DFA). Unlike the standard backpropagation (BP), DFA trains each layer independently, thus avoiding integer overflow which is a key problem when using BP with integer-only operations. We used PocketNN to train some DNNs on two well-known datasets, MNIST and Fashion-MNIST. Our experiments show that the DNNs trained with our PocketNN achieved 96.98% and 87.7% accuracies on MNIST and Fashion-MNIST datasets, respectively. The accuracies are very close to the equivalent DNNs trained using BP with floating-point real number operations, such that accuracy degradations were just 1.02%p and 2.09%p, respectively. Finally, our PocketNN has high compatibility and portability for low-end devices as it is open source and implemented in pure C++ without any dependencies.


翻译:标准深层次学习算法使用浮动点真实数字来实施。 这是在低端设备上实施这些算法的障碍, 这些低端设备可能没有专门的浮点单位( FPUs ) 。 因此, 小ML的研究人员已经考虑过机器学习算法, 这些算法可以只使用整数操作来培训和运行一个低端设备上的深层神经网络( DNN ) 。 在本文中, 我们建议使用纯 C++ 来培训和推断 DNNP 的光和自足的概念校验框架, 仅使用整数。 与其他方法不同, PocketNNNND直接在整数上运行, 不需要任何明确的浮点数算算算法或定制的固定点格式。 之所以能够做到这一点,是因为小MNP(DNP) 的激活功能是: 用于整数只 DNFNP的启动功能, 与我们经过训练的DNIS 数据源( BNM) 高, 使用完全的DNF- NIS 和 工具( ) 都显示我们经过训练的D- NISP) 的精明的D- ND- PD- PD- PD- P- P- P- m- m- m- s- m- s- s- sl) 数据源( 高) 。

0
下载
关闭预览

相关内容

FashionMNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。FashionMNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。60000/10000 的训练测试数据划分,28x28 的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月16日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员