Collective decision-making is an essential capability of large-scale multi-robot systems to establish autonomy on the swarm level. A large portion of literature on collective decision-making in swarm robotics focuses on discrete decisions selecting from a limited number of options. Here we assign a decentralized robot system with the task of exploring an unbounded environment, finding consensus on the mean of a measurable environmental feature, and aggregating at areas where that value is measured (e.g., a contour line). A unique quality of this task is a causal loop between the robots' dynamic network topology and their decision-making. For example, the network's mean node degree influences time to convergence while the currently agreed-on mean value influences the swarm's aggregation location, hence, also the network structure as well as the precision error. We propose a control algorithm and study it in real-world robot swarm experiments in different environments. We show that our approach is effective and achieves higher precision than a control experiment. We anticipate applications, for example, in containing pollution with surface vehicles.
翻译:集体决策是大型多机器人系统在群温水平上建立自主性的基本能力。关于群温机器人集体决策的文献中,很大一部分侧重于从有限选项中选择离散的决定。在这里,我们指派了一个分散的机器人系统,任务是探索无限制环境,就可测量环境特征的平均值达成共识,并集中到测量该价值的地区(例如轮廓线)。这项任务的独特质量是机器人动态网络地形学及其决策之间的因果循环。例如,网络的平均节点度影响趋同时间,而目前商定的平均值影响群温集合地点,因此网络结构以及精确误差。我们提议一种控制算法,并研究它在不同环境中真实世界机器人的温室实验中的位置。我们表明我们的方法是有效的,并且比控制实验更精确。我们预计应用,例如,在控制地面车辆污染方面。</s>