Let $A$ be a real $n\times n$ matrix and $z,b\in \mathbb R^n$. The piecewise linear equation system $z-A\vert z\vert = b$ is called an \textit{absolute value equation}. We consider two solvers for this problem, one direct, one semi-iterative, and extend their previously known ranges of convergence.
翻译:让$A 成为真实的 $n\ times n$ group 和 $z,b\ in \ mathbb R ⁇ n$。 praphy 线性方程系统 $z- A\vert z\ vert = b$ 被称为 \ textit{ absolute value 公式 。 我们考虑两个解决问题的解决方案, 一个是直接的, 一个是半点的, 并扩大其先前已知的趋同范围 。