Longitudinal and survival sub-models are two building blocks for joint modelling of longitudinal and time to event data. Extensive research indicates separate analysis of these two processes could result in biased outputs due to their associations. Conditional independence between measurements of biomarkers and event time process given latent classes or random effects is a common approach for characterising the association between the two sub-models while taking the heterogeneity among the population into account. However, this assumption is tricky to validate because of the unobservable latent variables. Thus a Gaussian copula joint model with random effects is proposed to accommodate the scenarios where the conditional independence assumption is questionable. In our proposed model, the conventional joint model assuming conditional independence is a special case when the association parameter in the Gaussian copula shrinks to zero. Simulation studies and real data application are carried out to evaluate the performance of our proposed model. In addition, personalised dynamic predictions of survival probabilities are obtained based on the proposed model and comparisons are made to the predictions obtained under the conventional joint model.


翻译:纵观和生存小模型是联合模拟纵向和时间与事件数据的联合模型的两个基石。广泛的研究表明,对这两个过程进行单独分析可能由于其关联而导致有偏差的产出。测量生物标记和事件时间过程之间的有条件独立性,考虑到潜伏类别或随机效应,是确定这两个小模型之间联系的通用方法,同时考虑人口中的异质性。然而,由于不可观测的潜在变量,这一假设难以验证。因此,提议了一个带有随机效应的高斯大千叶联极联合模型,以适应有条件独立假设有疑问的情景。在我们提议的模型中,假定有条件独立的常规联合模型是一个特殊案例,当高斯大交界的关联参数缩为零时,假设有条件独立的传统联合模型是一个特例。进行模拟研究和实际数据应用,以评价我们拟议模型的性能。此外,根据拟议的模型获得对生存概率的个性动态预测,并对根据常规联合模型获得的预测进行比较。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月30日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员