Latent class analysis (LCA) is a useful tool to investigate the heterogeneity of a disease population with time-to-event data. We propose a new method based on non-parametric maximum likelihood estimator (NPMLE), which facilitates theoretically validated inference procedure for covariate effects and cumulative hazard functions. We assess the proposed method via extensive simulation studies and demonstrate improved predictive performance over standard Cox regression model. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort dataset.
翻译:隐性类分析(LCA)是调查具有时间到活动数据的疾病人群的异质性的有用工具,我们提出了一个基于非参数最大可能性估计值(NPMLE)的新方法,该方法有利于对共变效应和累积危险功能进行理论上有效的推论程序,我们通过广泛的模拟研究对拟议方法进行评估,并展示比标准Cox回归模型更好的预测性能,我们进一步通过对轻度认知障碍群群数据集的应用进一步说明拟议方法的实际效用。