Models with intractable normalising functions have numerous applications. Because the normalising constants are functions of the parameters of interest, standard Markov chain Monte Carlo cannot be used for Bayesian inference for these models. Many algorithms have been developed for such models. Some have the posterior distribution as the asymptotic distribution. Other ``asymptotically inexact'' algorithms do not possess this property. There is limited guidance for evaluating approximations based on these algorithms. We propose two new diagnostics that address these problems. We provide theoretical justification for our methods and apply them to several algorithms in the context of challenging examples.
翻译:具有难以调和的正常功能的模型有许多应用程序。 因为正常常数是利益参数的函数, 标准 Markov 链 Monte Carlo 无法用于Bayesian 对这些模型的推断。 许多算法是为这些模型开发的。 有些算法是作为无药可救分布的后方分布法。 其它“ 不切实际”的算法并不拥有这种属性。 基于这些算法的近似值评价指导有限。 我们建议了两个解决这些问题的新诊断法。 我们为我们的方法提供了理论上的理由, 并在具有挑战性的例子中将其应用到几种算法中 。