In this letter, we propose a model identification method via hyperparameter optimization (MIHO). Our method adopts an efficient explore-exploit strategy to identify the parameters of dynamic models in a data-driven optimization manner. We utilize MIHO for model parameter identification of the AV-21, a full-scaled autonomous race vehicle. We then incorporate the optimized parameters for the design of model-based planning and control systems of our platform. In experiments, the learned parametric models demonstrate good fitness to given datasets and show generalization ability in unseen dynamic scenarios. We further conduct extensive field tests to validate our model-based system. The tests show that our race systems leverage the learned model dynamics and successfully perform obstacle avoidance and high-speed driving over $200 km/h$ at the Indianapolis Motor Speedway and Las Vegas Motor Speedway. The source code for MIHO and videos of the tests are available at https://github.com/hynkis/MIHO.
翻译:在这封信中,我们提出通过超光谱优化(MIHO)示范识别方法(MIHO)。我们的方法采用高效的探索利用战略,以数据驱动优化的方式确定动态模型的参数。我们使用MIHO来模拟AV-21的参数识别,AV-21是一部全尺寸自主的种族车辆。我们随后将优化参数纳入基于模型的平台规划和控制系统的设计。在实验中,所学的参数模型显示对特定数据集非常适合,并显示在不可见动态情景中的一般化能力。我们进一步进行了广泛的实地测试,以验证基于模型的系统。测试表明,我们的种族系统利用了所学的模型动态,成功地在印第安纳波利斯汽车高速道和拉斯维加斯汽车高速道(Las Vegas Motor Speedway)进行了200公里/公顷以上的障碍避免和高速驾驶。MIHO的源码和测试录像见https://github.com/hynkis/MIHO。