Data-driven state estimation (SE) is becoming increasingly important in modern power systems, as it allows for more efficient analysis of system behaviour using real-time measurement data. This paper thoroughly evaluates a PMU-only state estimator based on graph neural networks (GNNs) applied over factor graphs. To assess the sample efficiency of the GNN model, we perform multiple training experiments on various training set sizes. Additionally, to evaluate the scalability of the GNN model, we conduct experiments on power systems of various sizes. Our results show that the GNN-based state estimator exhibits high accuracy and efficient use of data. Additionally, it demonstrated scalability in terms of both memory usage and inference time, making it a promising solution for data-driven SE in modern power systems.
翻译:数据驱动状态估计(SE)在现代电力系统中越来越重要,因为它使得能够利用实时测量数据更有效地分析系统行为。本文透彻地评估了基于对因数图应用的图形神经网络(GNNs)的PMU唯一国家估计数据。为了评估GNN模型的抽样效率,我们进行了多种培训实验,涉及各种培训规模。此外,为了评估GNN模型的可缩放性,我们进行了不同尺寸的电源系统实验。我们的结果显示,基于GNN的国家测算器显示数据具有很高的准确性和效率。此外,它显示了记忆使用和推断时间两方面的可缩放性,使得它成为现代电力系统中以数据驱动的SE的一个很有希望的解决方案。</s>