Model-based unsupervised learning, as any learning task, stalls as soon asmissing data occurs. This is even more true when the missing data are infor-mative, or said missing not at random (MNAR). In this paper, we proposemodel-based clustering algorithms designed to handle very general typesof missing data, including MNAR data. To do so, we introduce a mixturemodel for different types of data (continuous, count, categorical and mixed)to jointly model the data distribution and the MNAR mechanism, remainingvigilant to the degrees of freedom of each. Eight different MNAR modelswhich depend on the class membership and/or on the values of the missingvariables themselves are proposed. For a particular type of MNAR mod-els, for which the missingness depends on the class membership, we showthat the statistical inference can be carried out on the data matrix concate-nated with the missing mask considering a MAR mechanism instead; thisspecifically underlines the versatility of the studied MNAR models. Then,we establish sufficient conditions for identifiability of parameters of both thedata distribution and the mechanism. Regardless of the type of data and themechanism, we propose to perform clustering using EM or stochastic EMalgorithms specially developed for the purpose. Finally, we assess the nu-merical performances of the proposed methods on synthetic data and on thereal medical registry TraumaBase as well.


翻译:在任何学习任务发生时,一旦出现基于模型的无监督的学习,数据就会在任何学习任务发生时暂停。当缺失的数据是暂时的,或者说不是随机的(MNAR)时,这甚至更为正确。在本文中,我们建议采用基于模型的群集算算法,旨在处理非常一般性的缺失数据类型,包括MNAR数据。为了这样做,我们引入了不同类型数据(连续的、计数的、绝对的和混合的)的混合模型,以联合模拟数据分布和MNAR机制,保持对每个数据自由程度的警惕。然后,我们提出了八个不同的MINAR模型,这些模型取决于类成员以及/或缺失的变量本身的价值。对于某类的MNAR模型,我们提出了基于类成员缺失的模型算法。我们表明,统计推论可以在数据矩阵中进行,与缺失的掩码相连接,考虑一个MAR机制;这具体地强调了所研究的MNAR模型的多功能性。然后,我们建立了充分的条件,以便识别数据分布的参数,而我们又将数据类型和数学主题作为我们研发的模型,然后将数据类型,我们将数据类型,然后将数据类型和数学的合成的模型作为我们向最终的运行的运行的运行。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
127+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
0+阅读 · 2023年4月3日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
127+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员