A majority of existing physical attacks in the real world result in conspicuous and eye-catching patterns for generated patches, which made them identifiable/detectable by humans. To overcome this limitation, recent work has proposed several approaches that aim at generating naturalistic patches using generative adversarial networks (GANs), which may not catch human's attention. However, these approaches are computationally intensive and do not always converge to natural looking patterns. In this paper, we propose a novel lightweight framework that systematically generates naturalistic adversarial patches without using GANs. To illustrate the proposed approach, we generate adversarial art (AdvART), which are patches generated to look like artistic paintings while maintaining high attack efficiency. In fact, we redefine the optimization problem by introducing a new similarity objective. Specifically, we leverage similarity metrics to construct a similarity loss that is added to the optimized objective function. This component guides the patch to follow a predefined artistic patterns while maximizing the victim model's loss function. Our patch achieves high success rates with $12.53\%$ mean average precision (mAP) on YOLOv4tiny for INRIA dataset.


翻译:为了克服这一限制,最近的工作提出了几种办法,目的是利用基因对抗网络(GANs)产生自然的补丁,这些办法可能不会引起人类的注意。然而,这些办法在计算上是密集的,并不总是与自然的外观模式趋同。在本文件中,我们提出了一个新的轻质框架,在不使用GANs的情况下系统地产生自然对抗的补丁。为说明拟议办法,我们制作了对抗艺术的补丁(AdvaRT),这些补丁在保持高攻击效率的同时看起来像艺术绘画。事实上,我们通过引入新的相似性目标重新定义了优化性问题。具体地说,我们利用类似性指标来构建类似性损失,这是最佳目标功能的补充。这个组成部分指导补丁遵循一种预先定义的艺术模式,同时尽量扩大受害者模式的损失功能。我们的补丁在INRIASet上取得了高成功率,平均精确度为12.53美元。</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员