We propose a novel procedure, which combines agglomerative hierarchical clustering and a test of overidentifying restrictions for selecting valid instrumental variables (IV) from a large set of candidate IVs. Some of these IVs may be invalid in the sense that they fail the exclusion restriction. We show that if the largest group of IVs is valid, our method achieves oracle properties. Compared with existing methods, our method can deal with weak instruments, multiple endogenous regressors and heterogeneous treatment effects. In simulations, we show that our method outperforms the two closest methods, the Hard Thresholding method and the Confidence Interval method.l the instruments are strong. Also, our method works well when some of the candidate instruments are weak, outperforming HT and CIM. We apply our method to the estimation of the effect of immigration on wages in the US.
翻译:我们提出一个新的程序,把集中式的等级分组和从大批候选四类中选择有效工具变量(IV)的过度识别限制测试结合起来。 其中一些四类可能无效,因为它们未能达到排除限制。 我们表明,如果最大的四类四类是有效的,那么我们的方法就具有无孔不入的特性。 与现有方法相比,我们的方法可以处理薄弱的仪器、多重内生递减器和多种治疗效应。 在模拟中,我们证明我们的方法优于两种最接近的方法,即“硬制压”方法和“互信互换法”。 l 工具是强大的。此外,当一些候选工具薄弱,优于“HT”和“CIM”等工具时,我们的方法效果很好。 我们用我们的方法来估计移民对美国工资的影响。