This article introduces a broadly-applicable new method of statistical analysis called hypotheses assessment. The method uses sample data to directly measure the truthfulness of competing hypotheses. Our aim is to determine frequentist non-misleading confidences in the hypotheses that are as powerful as the particular application allows. Hypotheses assessments complement hypothesis tests because providing confidences in the hypotheses in addition to test results can better inform applied researchers about the strength of evidence provided by the data. For simple hypotheses, the method produces minimum and maximum confidences in each hypothesis. The composite case is more complex, and we introduce two conventions to aid with understanding the strength of evidence. Assessments are qualitatively different from hypothesis testing and confidence interval outcomes, and thus fill a gap in the statistician's toolkit.


翻译:本条引入了一种广泛适用的统计分析新方法,称为假设评估。该方法使用抽样数据直接衡量相互竞争的假设的真实性。我们的目标是确定对特定应用所允许的强大假设的常年性而非误导性信心。假设评估补充了假设测试,因为除了测试结果之外,对假设的信任还可以使应用研究人员更好地了解数据提供的证据的强度。对于简单的假设,该方法产生对每个假设的最小和最大信任度。综合案例更为复杂,我们引入了两项公约以帮助理解证据的强度。评估在质量上不同于假设测试和信任间隔结果,从而填补了统计家工具包的空白。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
还在修改博士论文?这份《博士论文写作技巧》为你指南
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月23日
Arxiv
8+阅读 · 2021年3月2日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员