In this paper, we develop a high order residual distribution (RD) method for solving steady state conservation laws in a novel Hermite weighted essentially non-oscillatory (HWENO) framework recently developed in [23]. In particular, we design a high order HWENO reconstructions for the integrals of source term and fluxes based on the point values of the solution and its spatial derivatives, and the principles of residual distribution schemes are adapted to obtain steady state solutions. The proposed novel HWENO framework enjoys two advantages. First, compared with the traditional HWENO framework, the proposed methods do not need to introduce additional auxiliary equations to update the derivatives of the unknown function, and compute them from the current value and the old spatial derivatives. This approach saves the computational storage and CPU time, which greatly improves the computational efficiency of the traditional HWENO framework. Second, compared with the traditional WENO method, reconstruction stencil of the HWENO methods becomes more compact, their boundary treatment is simpler, and the numerical errors are smaller at the same grid. Thus, it is also a compact scheme when we design the higher order accuracy, compared with that in [11] Chou and Shu proposed. Extensive numerical experiments for one and two-dimensional scalar and systems problems confirm the high order accuracy and good quality of our scheme.


翻译:在本文中,我们开发了一种高顺序剩余分配法(RD)方法,用于在[23] 最近开发的赫米特加权基本上非循环(HWENO)新框架中解决稳定的国家养护法。特别是,我们根据解决方案及其空间衍生物的点值,设计了高顺序源值和通量集集的HWENO重建,并调整了剩余分配办法的原则,以获得稳定状态解决方案。拟议的HWENO新框架具有两个优势。首先,与传统的HWENO框架相比,拟议方法不需要引入额外的辅助方程式来更新未知功能的衍生物,并将它们从当前价值和旧的空间衍生物中计算出来。这种方法节省了计算存储和CPU的时间,大大提高了传统的HWENO框架的计算效率。第二,与传统的WENO方法相比,HWENO方法的重建速度变得更为紧凑,其边界处理更为简单,而同一电网中的数字错误则较小。因此,我们设计高层次和高层次的Shu和高层次的系统时,也是一种紧凑办法,我们设计了高层次和高层次的系统。

0
下载
关闭预览

相关内容

【经典书】计算理论导论,482页pdf
专知会员服务
84+阅读 · 2021年4月10日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月5日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员