This study presents a general machine learning framework to estimate the traffic-measurement-level experience rate at given throughput values in the form of a Key Performance Indicator for the cells on base stations across various cities, using busy-hour counter data, and several technical parameters together with the network topology. Relying on feature engineering techniques, scores of additional predictors are proposed to enhance the effects of raw correlated counter values over the corresponding targets, and to represent the underlying interactions among groups of cells within nearby spatial locations effectively. An end-to-end regression modeling is applied on the transformed data, with results presented on unseen cities of varying sizes.
翻译:这项研究提出了一个一般的机器学习框架,用以估计不同城市基站基站各单元的交通量测量水平经验率,其形式为关键业绩指标,使用时空反数据,以及若干技术参数和网络地形学。 依据地物工程技术,提议增加数十个预测器,以加强原始相关对应值相对于相应目标的影响,并有效地代表附近空间位置内各单元之间的基本互动。 在转换数据上采用了端到端回归模型,并介绍了不同规模的隐形城市的结果。