Search-based procedural content generation (PCG) is a well-known method for level generation in games. Its key advantage is that it is generic and able to satisfy functional constraints. However, due to the heavy computational costs to run these algorithms online, search-based PCG is rarely utilized for real-time generation. In this paper, we introduce mutation models, a new type of iterative level generator based on machine learning. We train a model to imitate the evolutionary process and use the trained model to generate levels. This trained model is able to modify noisy levels sequentially to create better levels without the need for a fitness function during inference. We evaluate our trained models on a 2D maze generation task. We compare several different versions of the method: training the models either at the end of evolution (normal evolution) or every 100 generations (assisted evolution) and using the model as a mutation function during evolution. Using the assisted evolution process, the final trained models are able to generate mazes with a success rate of 99% and high diversity of 86%. The trained model is many times faster than the evolutionary process it was trained on. This work opens the door to a new way of learning level generators guided by an evolutionary process, meaning automatic creation of generators with specifiable constraints and objectives that are fast enough for runtime deployment in games.
翻译:以搜索为基础的程序内容生成( PCG) 是一种为人熟知的游戏中水平生成方法。 关键优势在于它具有通用性, 能满足功能限制。 但是, 由于在网上运行这些算法的计算成本高昂, 以搜索为基础的PCG 很少用于实时生成。 在本文中, 我们引入了突变模型, 一种基于机器学习的新型迭代级生成器。 我们训练了一种模型, 以模仿进化过程, 并使用经过培训的模型来生成级别。 这个经过培训的模式能够按顺序修改吵闹的级别, 从而创造更好的级别, 不需要在推断过程中建立健身功能。 我们评估了我们经过培训的2D迷宫生成任务模型。 我们比较了方法的不同版本: 在进化( 正常进化) 结束时或每100代( 辅助进化) 培训模型, 并且使用模型作为进化过程中的突变函数。 我们训练模型能够产生99%的成功率和86%的高多样性的迷宫。 受过培训的模型比它所训练的进化过程要快许多倍。 我们比较了2D的模型。 我们比较了这个方法: 在进化( ) 变化过程中, 快速的变化过程中, 使自动的变化过程中, 进入了一个自动的变化过程意味着一个进入了一个新的变异化的游戏的进化过程, 进入了 进入了 进入了 进入了 进入了 进入了一个新的的游戏的进化过程。