Off-policy evaluation (OPE) aims to estimate the performance of hypothetical policies using data generated by a different policy. Because of its huge potential impact in practice, there has been growing research interest in this field. There is, however, no real-world public dataset that enables the evaluation of OPE, making its experimental studies unrealistic and irreproducible. With the goal of enabling realistic and reproducible OPE research, we publicize Open Bandit Dataset collected on a large-scale fashion e-commerce platform, ZOZOTOWN. Our dataset is unique in that it contains a set of multiple logged bandit feedback datasets collected by running different policies on the same platform. This enables experimental comparisons of different OPE estimators for the first time. We also develop Python software called Open Bandit Pipeline to streamline and standardize the implementation of batch bandit algorithms and OPE. Our open data and software will contribute to the fair and transparent OPE research and help the community identify fruitful research directions. We provide extensive benchmark experiments of existing OPE estimators using our dataset and software. The results open up essential challenges and new avenues for future OPE research.
翻译:离岸政策评价(OPE)旨在利用不同政策产生的数据来估计假设政策的绩效。由于其在实际中具有巨大的潜在影响,对这一领域的研究兴趣越来越大。然而,没有真实的世界公共数据集能够对OPE进行评估,使其实验性研究不现实和不可复制。为了能够进行现实和可复制的OPE研究,我们公布在大型时装电子商务平台ZOZOZOTOWN上收集的开放强盗数据集。我们的数据集是独一无二的,因为它包含通过在同一平台上执行不同政策而收集的多条登录强盗反馈数据集。这首次使得对OPE不同估计者的实验性比较成为可能。我们还开发了名为Open Bandit Pipeline的Python软件,以简化和规范实施批装强盗算法和OPE。我们的开放数据和软件将有助于OPE研究的公平和透明的研究,并帮助社区确定富有成果的研究方向。我们为使用我们的数据和软件的现有OPE估计员提供了广泛的基准实验。结果为OPE未来研究开辟了基本的挑战和新途径。