In the noisy intermediate-scale quantum era, scientists are trying to improve the entanglement swapping success rate by researching anti-noise technology on the physical level, thereby obtaining a higher generation rate of long-distance entanglement. However, we may improve the generation rate from another perspective, which is studying an efficient entanglement swapping strategy. This paper analyzes the challenges faced by existing entanglement swapping strategies, including the node allocation principle, time synchronization, and processing of entanglement swapping failure. We present Parallel Segment Entanglement Swapping (PSES) to solve these problems. The core idea of PSES is to segment the path and perform parallel entanglement swapping between segments to improve the generation rate of long-distance entanglement. We construct a tree-like model as the carrier of PSES and propose heuristic algorithms called Layer Greedy and Segment Greedy to transform the path into a tree-like model. Moreover, we realize the time synchronization and design the on-demand retransmission mechanism to process entanglement swapping failure. The experiments show that PSES performs superiorly to other entanglement swapping strategies, and the on-demand retransmission mechanism can reduce the average entanglement swapping time by 80% and the average entanglement consumption by 80%.
翻译:暂无翻译