Graph data management and querying has many practical applications. When graphs are very heterogeneous and/or users are unfamiliar with their structure, they may need to find how two or more groups of nodes are connected in a graph, even when users are not able to describe the connections. This is only partially supported by existing query languages, which allow searching for paths, but not for trees connecting three or more node groups. The latter is related to the NP-hard Group Steiner Tree problem, and has been previously considered for keyword search in databases. In this work, we formally show how to integrate connecting tree patterns (CTPs, in short) within a graph query language such as SPARQL or Cypher, leading to an Extended Query Language (or EQL, in short). We then study a set of algorithms for evaluating CTPs; we generalize prior keyword search work, most importantly by (i) considering bidirectional edge traversal and (ii) allowing users to select any score function for ranking CTP results. To cope with very large search spaces, we propose an efficient pruning technique and formally establish a large set of cases where our algorithm, MOLESP, is complete even with pruning. Our experiments validate the performance of our CTP and EQL evaluation algorithms on a large set of synthetic and real-world workloads.


翻译:图表数据管理和查询有许多实际应用。 当图形非常多样化和(或)用户对其结构不熟悉时, 他们可能需要在图形中找到如何将两个或更多组节点连接在一起, 即使用户无法描述连接。 这只有部分得到现有查询语言的支持, 这些语言允许搜索路径, 而不是连接三个或更多节点组的树。 后者与NP- 硬类 Steiner Tree 问题有关, 并曾考虑在数据库中搜索关键字。 在这项工作中, 我们正式展示如何将连接树型( CTPs, 简称) 整合到像 SPARQL 或 Cypher 这样的图表查询语言中, 导致扩展的Query 语言( 简称 EQL ) 。 我们随后研究一套用于评价 CTPs 的算法; 我们将先前的关键词搜索工作普遍化, 最重要的是 (i) 考虑双向边缘路过, 以及 (ii) 允许用户选择任何CTP 结果的评分数功能。 为了适应非常大的搜索空间, 我们提议一种高效的运行技术, 并正式建立一套我们的QL 级演算系统。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员