A key challenge in the study of multiagent cooperation is the need for individual agents not only to cooperate effectively, but to decide with whom to cooperate. This is particularly critical in situations when other agents have hidden, possibly misaligned motivations and goals. Social deduction games offer an avenue to study how individuals might learn to synthesize potentially unreliable information about others, and elucidate their true motivations. In this work, we present Hidden Agenda, a two-team social deduction game that provides a 2D environment for studying learning agents in scenarios of unknown team alignment. The environment admits a rich set of strategies for both teams. Reinforcement learning agents trained in Hidden Agenda show that agents can learn a variety of behaviors, including partnering and voting without need for communication in natural language.
翻译:多代理人合作研究中的一个关键挑战是,个人代理人不仅需要有效合作,而且需要决定与谁合作。在其他代理人隐藏、可能与动机和目标不相符的情况下,这一点尤其重要。社会扣减游戏为研究个人如何学会合成关于他人的潜在不可靠信息并阐明其真实动机提供了一个途径。在这项工作中,我们介绍了一个双组社会扣减游戏,一个两组社会扣减游戏,为在未知团队一致的情况下学习学习代理人提供了一个2D环境。环境为两个小组承认了一套丰富的战略。在隐藏议程方面受过培训的强化学习代理人显示,代理人可以学习各种行为,包括无需用自然语言进行交流的合伙和投票。