Accurate and smooth global navigation satellite system (GNSS) positioning for pedestrians in urban canyons is still a challenge due to the multipath effects and the non-light-of-sight (NLOS) receptions caused by the reflections from surrounding buildings. The recently developed factor graph optimization (FGO) based GNSS positioning method opened a new window for improving urban GNSS positioning by effectively exploiting the measurement redundancy from the historical information to resist the outlier measurements. Unfortunately, the FGO-based GNSS standalone positioning is still challenged in highly urbanized areas. As an extension of the previous FGO-based GNSS positioning method, this paper exploits the potential of the pedestrian dead reckoning (PDR) model in FGO to improve the GNSS standalone positioning performance in urban canyons. Specifically, the relative motion of the pedestrian is estimated based on the raw acceleration measurements from the onboard smartphone inertial measurement unit (IMU) via the PDR algorithm. Then the raw GNSS pseudorange, Doppler measurements, and relative motion from PDR are integrated using the FGO. Given the context of pedestrian navigation with a small acceleration most of the time, a novel soft motion model is proposed to smooth the states involved in the factor graph model. The effectiveness of the proposed method is verified step-by-step through two datasets collected in dense urban canyons of Hong Kong using smartphone-level GNSS receivers. The comparison between the conventional extended Kalman filter, several existing methods, and FGO-based integration is presented. The results reveal that the existing FGO-based GNSS standalone positioning is highly complementary to the PDR's relative motion estimation. Both improved positioning accuracy and trajectory smoothness are obtained with the help of the proposed method.
翻译:城市峡谷行人定位的精确和平稳全球导航卫星系统(GNSS)在城市峡谷行人的定位仍是一个挑战。由于周围建筑物的反射造成的多路效应和不见光(NLOS)接收,本文利用了FGO的行人死亡计算(PDR)模型的潜力来改善城市导航系统的定位。最近开发的因数图形优化(FGO)基于全球导航卫星系统定位方法为改进城市导航系统定位开辟了新的窗口,方法是有效利用历史信息中的测量冗余来抵制外部测量。不幸的是,基于FGO的全球导航卫星系统独立定位在高度城市化地区仍然受到挑战。作为以前基于FGO的全球导航卫星系统定位方法的延伸,本文利用了FGO的行人死亡计算(PDR)模型的辅助定位(PDR)模型(PDR)模型(PDR)的快速定位(PDR)模型(PRO)模型(PGO)的快速定位(PFDO(PL)定位)模型(PLO(PL)定位)模型(PLO(PLO(PLO)的定位)模型定位定位)模型定位定位定位定位定位定位定位模型(PLV(PLI(PLILI)模型)模型(PLO(PLILO(PLO)模型)模型)的定位)模型定位)模型(FGO(FGO(PLV)模型(PLVFGO)模型)模型)模型(定位)模型定位)模型(定位)的定位定位)的定位定位定位定位模型(定位)模型(FGO(FGO(FGO(定位)模型(定位)模型)模型(FGO)模型(FGO)的定位)的定位)的缩。。。在时间的缩(FGO)的缩(GO)模型)的缩定位)的缩,该)的缩。。。。。建议)的缩,这是)的缩动)的缩,这是以“快速定位)的缩,这是的缩图)的快速),这是“快速定位)的缩。在使用最新的缩。在使用最新的缩图)中,在使用最新的模型(快速的缩(快速的快速的快速的缩和移动(GOFGO)