We consider the optimization problem of minimizing an objective functional, which admits a variational form and is defined over probability distributions on the \textit{constrained domain}, which poses challenges to both theoretical analysis and algorithmic design. Inspired by the mirror descent algorithm for constrained optimization, we propose an iterative and particle-based algorithm, named Mirrored Variational Transport (\textbf{mirrorVT}). For each iteration, \textbf{mirrorVT} maps particles to a unconstrained dual space induced by a mirror map and then approximately perform Wasserstein gradient descent on the manifold of distributions defined over the dual space by pushing particles. At the end of iteration, particles are mapped back to the original constrained space. Through simulated experiments, we demonstrate the effectiveness of \textbf{mirrorVT} for minimizing the functionals over probability distributions on the simplex- and Euclidean ball-constrained domains. We also analyze its theoretical properties and characterize its convergence to the global minimum of the objective functional.
翻译:我们考虑将一个目标功能最小化的优化问题,它允许一种变异形式,并且定义了在\ textit{ 受限制域} 上的概率分布,这对理论分析和算法设计都提出了挑战。在限制优化的镜像下沉算法的启发下,我们提出了一个迭代和粒子基算法,名为“镜像变换运算法”(\ textbf{mirrorVT}) 。对于每个迭代,\ textbf{mirrorVT} 将颗粒映射到由镜像地图引发的不受限制的双重空间,然后在通过推粒子在双空定义的分布中大致地进行瓦瑟斯坦梯度下降。在迭代法结束时,粒子被映射回到原来的限制空间。通过模拟实验,我们展示了\ textbf{mirrorVT} 的功效,以最大限度地减少简单X 和 Euclidean 球受限制的域的概率分布。我们还分析了其理论特性,并描述其与目标功能的全球最低值的趋同性。