We introduce a novel approach to unsupervised and semi-supervised domain adaptation for semantic segmentation. Unlike many earlier methods that rely on adversarial learning for feature alignment, we leverage contrastive learning to bridge the domain gap by aligning the features of structurally similar label patches across domains. As a result, the networks are easier to train and deliver better performance. Our approach consistently outperforms state-of-the-art unsupervised and semi-supervised methods on two challenging domain adaptive segmentation tasks, particularly with a small number of target domain annotations. It can also be naturally extended to weakly-supervised domain adaptation, where only a minor drop in accuracy can save up to 75% of annotation cost.
翻译:我们引入了一种新颖的方法,用于未经监管和半监管的语义分割域的适应。 与以前许多依靠对抗性学习进行特征对齐的方法不同,我们利用对比性学习,通过对各域结构相似的标签补丁的特征进行校正,弥合域间差距。 结果,网络更容易培训和提供更好的绩效。 我们的方法在两种具有挑战性的域间适应分割任务上始终优于最先进的、未经监管和半监管的方法,特别是少数目标域说明。 这种方法还可以自然扩大到薄弱但受监管的域间适应,只有精确度略微下降才能节省75%的批注成本。