Modern noise-cancelling headphones have significantly improved users' auditory experiences by removing unwanted background noise, but they can also block out sounds that matter to users. Machine learning (ML) models for sound event detection (SED) and speaker identification (SID) can enable headphones to selectively pass through important sounds; however, implementing these models for a user-centric experience presents several unique challenges. First, most people spend limited time customizing their headphones, so the sound detection should work reasonably well out of the box. Second, the models should be able to learn over time the specific sounds that are important to users based on their implicit and explicit interactions. Finally, such models should have a small memory footprint to run on low-power headphones with limited on-chip memory. In this paper, we propose addressing these challenges using HiSSNet (Hierarchical SED and SID Network). HiSSNet is an SEID (SED and SID) model that uses a hierarchical prototypical network to detect both general and specific sounds of interest and characterize both alarm-like and speech sounds. We show that HiSSNet outperforms an SEID model trained using non-hierarchical prototypical networks by 6.9 - 8.6 percent. When compared to state-of-the-art (SOTA) models trained specifically for SED or SID alone, HiSSNet achieves similar or better performance while reducing the memory footprint required to support multiple capabilities on-device.


翻译:现代消音耳机通过消除不必要的背景噪音,大大改善了用户的听觉经验,消除了不必要的背景噪音,但也能够阻断用户认为重要的声音。 机器学习(ML)声音检测(SED)模型和语音识别(SID)模型可以让耳机有选择地通过重要声音传递; 然而,实施这些以用户为中心的模型带来了一些独特的挑战。 首先,大多数人花有限的时间定制耳机,因此声音检测应该合理顺利地从盒子里抽出。 其次,模型应该能够随着时间而了解对用户以其隐含和明确互动为基础很重要的具体声音。 最后,这些模型应该有一个小的记忆足迹,用低功率的耳机检测(SED)模型,用高等级SESSNet(SED)和SID(SID(SED(SED))网络,使用等级分级的热门性能检测一般和特定的兴趣声音,并描述类似和语音声音的声音。我们显示,HSSNet(SISNet(SISNet)应该用经过专门训练的SISA(SIS-SISISA)模型,然后用SISISISMA(SISISISD(SAS-SAS-S-S-SIS-SIR-S-SIS-SIS-SIR-SIS-SIS-SAS-SAS-S-SAS-S-S-S-S-S-SAS-S-S-S-S-S-S-S-S-S-S-S-S-S-SIR-SIR-S-S-SIS-S-S-SIR-SIS-S-S-S-S-S-S-SIR-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SIS-A-S-S-S-S-S-SIS-SIS-SIS-SIS-SIS-SIS-SIS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-A-A-A-A-A-</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员