We give a structure preserving spatio-temporal discretization for incompressible magnetohydrodynamics (MHD) on the sphere. Discretization in space is based on the theory of geometric quantization, which yields a spatially discretized analogue of the MHD equations as a finite-dimensional Lie--Poisson system on the dual of the magnetic extension Lie algebra $\mathfrak{f}=\mathfrak{su}(N)\ltimes\mathfrak{su}(N)^{*}$. We also give accompanying structure preserving time discretizations for Lie--Poisson systems on the dual of semidirect product Lie algebras of the form $\mathfrak{f}=\mathfrak{g}\ltimes\mathfrak{g^{*}}$, where $\mathfrak{g}$ is a $J$-quadratic Lie algebra. Critically, the time integration method is free of computationally costly matrix exponentials. We prove that the full method preserves the underlying geometry, namely the Lie--Poisson structure and all the Casimirs. To showcase the method, we apply it to two models for magnetic fluids: incompressible magnetohydrodynamics and Hazeltine's model.
翻译:暂无翻译