Count data appears in various disciplines. In this work, a new method to analyze time series count data has been proposed. The method assumes exponentially decaying covariance structure, a special class of the Mat\'ern covariance function, for the latent variable in a Poisson regression model. It is implemented in a Bayesian framework, with the help of Gibbs sampling and ARMS sampling techniques. The proposed approach provides reliable estimates for the covariate effects and estimates the extent of variability explained by the temporally dependent process and the white noise process. The method is flexible, allows irregular spaced data, and can be extended naturally to bigger datasets. The Bayesian implementation helps us to compute the posterior predictive distribution and hence is more appropriate and attractive for count data forecasting problems. Two real life applications of different flavors are included in the paper. These two examples and a short simulation study establish that the proposed approach has good inferential and predictive abilities and performs better than the other competing models.


翻译:计数数据出现在不同的学科中 。 在此工作中, 提出了一个分析时间序列计数数据的新方法 。 该方法假设了指数衰减共变结构, 即马特/ 欧恩共变函数的特殊类别, 用于 Poisson 回归模型中的潜伏变量 。 该方法在一个巴伊西亚框架中, 在 Gibbs 取样和 ARMS 取样技术的帮助下实施 。 拟议方法为共变效应提供了可靠的估计, 并估算了时间依赖过程和白噪声过程所解释的变异程度 。 该方法具有灵活性, 允许不规则的空间数据, 并且可以自然扩展至更大的数据集 。 巴伊西亚 执行有助于我们计算远地点的预测分布, 因此对于计算数据预测问题更为合适和有吸引力。 文件中包含了两种不同口味的真实生命应用。 这两个例子和简短的模拟研究证明, 拟议方法具有良好的推断和预测能力, 并且比其他竞争性模型表现得更好 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月9日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员